logo

Свойства ионных каналов. Клеточная мембрана нервной клетки

Лиганд-активируемые каналы, отвечающие на внутриклеточные стимулы, включают каналы, чувствительные к местным изменениям концентрации специфических ионов. Например, кальций-активируемые калиевые каналы активируются локальным повышением концентрации внутриклеточного кальция. Такие каналы играют важную роль в реполяризации клеточной мембраны во время завершения потенциала действия. Помимо ионов кальция, типичными представителями лигандов, активирующих ионные каналы с цитоплазматической стороны мембраны, являются циклические нуклеотиды. Циклический ГМФ, например, отвечает за активацию натриевых каналов в палочках сетчатки. Такой тип канала играет принципиальную роль в работе зрительного анализатора.

Эта классификация не является достаточно строгой. Например, кальций-активируемые калиевые каналы чувствительны также к изменению потенциала, а некоторые потенциал-активируемые ионные каналы чувствительны к внутриклеточным лигандам.

Для измерения ионных токов через одиночные каналы первоначально был предложен непрямой метод анализа мембранного шума. Затем был разработан способ прямой регистрации одиночных ионных каналов с помощью метода, который называется пэтч-кламп (patch-clamp). В совокупности эти подходы дали прямые ответы на вопросы, касающиеся функции ионных каналов, как то: какой заряд проходит через одиночный канал? как долго канал остается открытым? как время нахождения ионного канала в открытом или закрытом состоянии зависит от мембранного потенциала?

Пэтч-кламп метод, предложенный Э. Неером, Б. Сакманном и их коллегами, значительно углубил наши знания о функционировании ионных каналов. Для пэтч-кламп регистрации необходимо, чтобы кончик стеклянной пипетки с внутренним диаметром около 1 мкм плотно контактировал с мембраной исследуемой клетки. При удачном подведении, благодаря легкому присасыванию, между клеточной мембраной и стеклом пипетки создается сопротивление больше 109 Ом (отсюда возник термин «гигаомный контакт», gigaohm seal). Когда пипетка соединена с соответствующим усилителем, можно зарегистрировать небольшие токи, проходящие через участок мембраны, находящейся внутри кончика пипетки. Такая конфигурация пэтч-кламп метода называется cell attached (контакт с клеткой). Высокоомный контакт гарантирует, что ионные токи, проводимые этим участком клеточной мембраны, проходят преимущественно через усилительную аппаратуру, а не теряются в месте контакта пэтч-пипетки с клеткой. При использовании пэтч-кламп метода регистрируемые события состоят из прямоугольных токовых сигналов, отражающих процессы открытия и закрытия одиночных ионных каналов. Таким образом, мы в реальном времени можем наблюдать активность одиночных белковых молекул мембраны.

В простом случае токи одиночных каналов появляются нерегулярно и с различной продолжительностью, но с постоянной амплитудой. В некоторых случаях, однако, картина токов может быть более сложной. Некоторые ионные каналы, например, в открытом состоянии могут иметь более чем один уровень проводимости. Кроме того, ионные каналы могут проявлять комплексную кинетику. Например, ток через одиночный ионный канал может выглядеть не как простой прямоугольник, а как «вспышка» открытий канала.

Таким образом, пэтч-кламп метод предоставляет новые уникальные возможности для изучения поведения ионных каналов. Во-первых, изоляция маленького участка мембраны позволяет наблюдать активность всего нескольких ионных каналов, а не тысяч, которые активируются в целой клетке. Во-вторых, высокое сопротивление контакта дает возможность регистрировать даже крайне одиночных ионных каналов и можем провести анализ кинетики каналов.

Перейти на страницу:
1 2 3 4 5 6

 


Copyright © 2013 - SimpleBiology.ru - Все права защищены