logo

Свойства ионных каналов. Клеточная мембрана нервной клетки

Пэтч-кламп метод позволяет осуществлять также регистрацию ионных каналов и в других конфигурациях. Достигнув контакта в конфигурации cell attached, можно, отводя электрод, оттянуть участок мембраны для формирования inside-out (внутренняя сторона наружу) конфигурации. В последнем случае цитоплазматическая сторона мембраны будет обрашена к перфузионному раствору. С другой стороны, с помощью небольшого дополнительного присасывания можно прорвать участок мембраны, расположенный внутри регистрирующего электрода, обеспечив контакт последнего с цитоплазмой клетки. В этих условиях будут регистрироваться токи в конфигурации whole-cell (целая клетка). Наконец, после получения конфигурации «целая клетка», можно оттянуть электрод от клетки, сформировав из мембраны сначала тонкую перемычку, а затем, после отделения этого участка, получить конфигурацию outside-out (наружная сторона наружу). Каждая из этих конфигураций имеет свои преимущества, их использование зависит от типа изучаемого ионного канала и той информации, которую мы хотим получить в данном эксперименте. Например, для аппликации веществ на внешнюю сторону мембраны предпочтительной является конфигурация outside-out.

Пэтч-кламп конфигурация «целая клетка» предполагает обмен между цитоплазмой клетки и раствором, заполняющим регистрирующую пипетку. Этот обмен, называемый иногда «диализ», может быть использован для намеренной замены внутриклеточного состава ионов на те, которые находятся в пипетке. С другой стороны (особенно в тех случаях, когда клетка мала), необходимо учитывать, что важные цитоплазматические компоненты могут быть потеряны из-за их быстрого перехода во внутрипипеточный раствор. Такой потери можно избежать, используя так называемый перфорированный пэтч-кламп метод. В этом случае для формирования начальной cell attached конфигурации используется пипетка, заполненная веществом, способным формировать мембранные поры (например антибиотик нистатин). По прошествии некоторого времени в изолированном с помощью электрода участке мембраны образуются проницаемые для электролитов поры, позволяющие регистрировать ионные токи в конфигурации «целая клетка».

До разработки пэтч-кламп метода свойства ионных каналов в клеточных мембранах исследовались в экспериментах, в которых для измерения мембранного потенциала или мембранного тока использовались стеклянные микроэлектроды. Использование Лингом и Джерардом в 1949 году стеклянных микроэлектродов для внутриклеточной регистрации ионных токов в живых клетках было не менее важным событием, чем введение пэтч-кламп метода три десятилетия спустя. Этот метод обеспечивал точное измерение мембранного потенциала покоя клетки, потенциала действия, а также ответов на синаптическую активацию мышечных волокон и нейронов.

Метод внутриклеточной регистрации. Острая стеклянная микропипетка, диаметр кончика которой не превышает 0,5 мкм, заполненная концентрированным солевым раствором (например, 3 M KC1), служит электродом и присоединяется к вольтметру для записи потенциала. Момент прокалывания пипеткой клеточной мембраны, приводящий к проникновению ее в клеточную цитоплазму, проявляется мгновенным появлением потенциала, соответствующего мембранному потенциалу покоя. При удачном проникновении в клетку мембрана обхватывает внешнюю поверхность пипетки, благодаря чему цитоплазма остается изолированной от внеклеточной жидкости.

В начале 1970-х годов, используя нервно-мышечный синапс лягушки, Катц и Миледи предприняли оригинальные эксперименты, в которых метод внутриклеточной микроэлектродной регистрации использовался для изучения характеристик «шумов», продуцируемых медиатором ацетилхолином (АХ). В таком синапсе АХ, освобождаюшийся из моторного нервного окончания, открывает хемовозбудимые ионные каналы постсинаптической мембраны. Вход катионов в волокно через открытые ионные каналы вызывает деполяризацию мембраны. Когда Катц и Миледи локально апплицировали экзогенный АХ на область синапса, они обнаружили, что вызванная деполяризация сопровождалась электрическим «шумом». Во время стабильной деполяризации быстрые колебания потенциала были гораздо больше колебаний изолинии в покое. Они предположили, что возрастание электрического шума в присутствии АХ было связано с хаотичным открытием и закрытием АХ-активируемых ионных каналов. Иными словами, аппликация АХ приводила к открытию большого числа ионных каналов, и число это случайно колебалось в зависимости от числа взаимодействий АХ с рецепторами.

Перейти на страницу:
1 2 3 4 5 6

 


Copyright © 2013 - SimpleBiology.ru - Все права защищены