logo

Основные понятия молекулярной биологии

Эти особенности взаимоотношений азота и водорода играют в живой природе очень важную роль.

Кислород (№ 8). В нормальном состоянии на внешней орбите атома находится шесть электронов, из которых четыре спарены, и только два могут участвовать в образовании химических связей. Кислород двухвалентен. Помимо этого, он обладает уникальной особенностью: весьма склонен отнимать у других атомов электрон и включать его в состав своей внешней оболочки, превращаясь в отрицательный ион. В этом смысл процесса окисления. Захваченный электрон спаривается с одним из двух прежде свободных электронов кислорода и его ион оказывается одновалентным. Говорят, что кислород обладает сродством к электрону. Это обусловлено тем, что присоединивший седьмой электрон к своей внешней электронной оболочке ион кислорода приближается к очень устойчивой конфигурации инертного атома неона. Азот и кислород в этом плане являются антиподами. Азот может служить донором электрона, а кислород является его акцептором»

Сродство кислорода к электрону проявляется и тогда, когда оба его свободных электрона заняты в образовании ковалентных связей. Кислород «стремится» удержать около себя спаренные электроны этих связей, оттягивая на себя таким образом электронную плотность и получая некоторый отрицательный заряд.

Кроме того кислород, имея на внешней орбите спаренные электроны (даже две пары), способен, подобно азоту притягивать оказавшийся поблизости дефицитный по электронной плотности атом водорода.

Описанные особенности атомов азота и кислорода позволяют понять природу слабых сил взаимодействия, играющих ключевую роль как в образовании пространственной структуры белков и ферментативном катализе, так и в спаривании нитей ДНК. Рассмотрим три главных типа таких сил.

1. Ионная связь. Такая связь может возникнуть при сближении отрицательного иона кислорода (например после диссоциации водорода от карбоксильной группы) и положительного иона четырехвалентного азота, как показано на рис. 3. Не интересующие нас пока остальные участки молекул изображены в виде прямоугольников).

Расстояние между ядрами ионов кислорода и азота около ЗА, а сила взаимного притяжения такова, что для отрыва их друг от друга требуется затратить 0,95 килокалорий на каждый моль ионных пар. Для разрыва же ковалентной химической связи (например, между двумя атомами углерода) требуется почти в сто раз больше энергии — около 85 ккал/моль.

2. Водородная связь. Образование так называемой «водородной» связи обусловлено указанными выше явлениями:

поляризацией связи N—Н

притяжением обедненного электронами водорода к атому азота или кислорода, имеющим на внешней орбите спаренные электроны.

Расстояния между ядрами двух азотов или азота и кислорода такие же, как при ионной связи — около ЗА. Ядро водорода как бы зажато между почти соприкасающимися внешними электронными оболочками N и N или N и О. Для разрыва водородной связи требуется около 0,7 ккал/моль — это тоже слабая связь.

3. Гидрофобная связь. Это, по существу говоря, не связь, а «невольное» объединение молекул, отторгнутых молекулами воды. Гидрофобные молекулы «не любят» воду — растворяются в ней очень плохо. Растворимость в воде означает склонность вещества распадаться на отдельные молекулы, каждую из которых окружает гидратная оболочка — слой «прилипших» молекул воды. «Прилипание» воды (смачивание) происходит благодаря притяжению поляризованных молекул воды (диполей) к ионам или заряженным участкам растворяемых молекул (рис1). Поляризованность молекулы воды, если учесть, что в реальности оба водорода действительно находятся по одну сторону от атома кислорода.

Перейти на страницу:
1 2 3 4 5 6

 


Copyright © 2013 - SimpleBiology.ru - Все права защищены