logo

Физиологическая роль основных клеточных органоидов

Митохондрии (от греч. митос – нить, хондрион – гранулы) – органеллы шарообразной формы, диаметром 0,5 мкм и длиной 2 мкм. Это нестойкие структуры, в липофильных жидкостях они разрушаются, а в воде набухают; имеют двойную оболочку, состоящую из внутренней и внешней мембран. Между мембранами есть просвет (10 нм), заполненный сывороткой. Внутренняя мембрана митохондрий образует кристы, или трубочки. К внутренней мембране со стороны стромы присоединены с помощью «стебельков», или ножек, частицы, которые получили название оксисом, потому что они содержат окислительные ферменты. Внутреннее пространство митохондрий заполнено матриксом, или хондриоплазмой, – вязким раствором, содержащим ферменты.

Митохондрии состоят из белка и липидов, среди которых половина приходится на фосфолипиды. Неотъемлемыми компонентами митохондрий являются дезоксирибонуклеиновая кислота (ДНК) и все типы РНК. Находящаяся в матриксе митохондрий ДНК в виде нитей способна к независимой от ДНК ядра репликации. В митохондриях обнаружены специфические рибосомы, которые обеспечивают автономный синтез некоторых белков. Так, митохондрии проростков гороха содержат (в%): белка – 30–40, РНК – 0,5–1,0 и фосфолипидов – 30. В митохондриях сосредоточены ферменты цикла трикарбоновых кислот, флавопротеиды и цитохромы. Митохондрии, дыхательные центры клетки обладают следующими функциями:

1) осуществляют окислительные реакции, являющиеся источником электронов;

2) переносят электроны по цепи компонентов, синтезирующих АТФ;

3) катализируют синтетические реакции, идущие с использованием энергии АТФ;

4) регулируют биохимические процессы в цитоплазме.

Пластиды – имеют двойную мембранную оболочку, внутри которой находится гранулярное вещество, называемое стромой. В начале развития строма пластид имеет гранулярное строение. Структура хлоропласта формируется в несколько этапов. Первичная дифференциация пластиды начинается с инвагинаций внутренней мембраны до образования проламеллярного тела (без света). Второй этап связан с образованием ламеллярногранулярного строения, биосинтезом и накоплением хлорофилла. В хлоропластах высших растений образуются граны, которые состоят из серии ламелл или двойных мембран. Каждая двойная мембрана образует закрытый мешочек, или сумку, которая называется тилакоидом. Ламеллы состоят из белков и липидов. Химический анализ ламелл. выделенных из хлопопластов шпината, показал, что они на 52% состоят из белка и на 48% из липидной фракции, которая включает хлорофилл а и в, каротиноиды (ксантофиллы и каротины), пластохинон, витамин К1, фосфолипиды (галактозилглицериды, фосфоглицериды), сульфолипиды.

Рибосомы – это рибонуклеопротеидные частицы сферической формы, диаметром 15–35 мм. Они состоят приблизительно из одинакового количества структурного белка и высокополимерной РНК. Комплексы из пяти и более рибосом называются полирибосомами или полисомами. Каждая рибосома состоит из двух субъединиц с различными коэффициентами седиментации, которые агрегируют в рибосому с помощью ионов магния. Слипаясь по две, они образуют димеры.

Рибосомы очень пористые и отличаются высокой степенью гидратации, выполняя чрезвычайно важные функции в обмене веществ – это центры биосинтеза белка в клетке. Функции рибосом в белковом синтезе заключаются в том, что они осуществляют процесс, в котором активированные аминокислоты конденсируются, образуя полипептидную цепь.

Сферосомы – субмикроскопические компактные частицы цитоплазмы диаметром 0,4–0,8 мкм, содержат белковую строму и цитохромоксидазу, ферментативно активные, богаты жирами. Сферосомы, по-видимому, осуществляют биосинтез жиров, а именно последний его этап – переэтерифнкацию глицерофосфата путем обмена между фосфорной кислотой и жирными кислотами. Таким образом, Сферосомы считают специализированными органеллами, функция которых – биосинтез жиров.

Перейти на страницу:
1 2 3

 


Copyright © 2013 - SimpleBiology.ru - Все права защищены