logo

Физиологическое значение меди в жизнедеятельности растений

И.Н.Полухина и М.К.Масляная (1962) изучили влияние меди на раз­витие завязей и зерновок у культурных злаков. Они показали, что недо­статок меди нарушает развитие зерновок, в результате чего появляется щуплое зерно. Анатомическое изучение зерновок с момента их образова­ния показало отрицательное действие дефицита меди на завязи, имеющие зрелые зародышевые мешки. Недостаток меди вызывает дегенерацию уже зрелого зародышевого мешка, что и приводит к щуплости зерна. Б.Ливдане, Г.Озолиня и Л.Лапиня (1970) при острой медной недостаточности в период цветения растений наблюдали морфологические изменения муж­ских генеративных органов и массовое отмирание женских генеративных органов. Относительное содержание меди в отмерших завязях не превы­шало 2 мкг/г, тогда как в жизнеспособных достигало 20 мкг/г и более. Со­держание, меди в созревших зерновках у растений высокого медного фона варьирует около 10, а у дефицитных — около 1 мкг/г.

Остановимся на данных об ингибировании фотопериодической чувствительности с помощью меди. В опытах Хильмана (Hillman, 1962) каждое из короткодневных растений Lemna perpusilla 6746 и длиннодневных L. gibba G3, будучи выращенными на среде Хогланда, имели нормальный фотопериод. При добавлении меди (2 мг/л) L. perpusilla из короткодневной становится нейтральной, в то время как длиннодневная L. gibba пе­рестает цвести. Подобный, но менее сильный эффект обнаружен под влия­нием ртути. Кобальт, хром, марганец, никель, свинец и цинк не ока­зывали подобного действия, но некоторые из них слегка видоизменили эффект меди. Действие меди интерпретируется как ингибирование фото­периодической чувствительности при участии фитохрома.

Хромопротеид фитохром представляет собой фотоактивную каталатическую систему, обратимо изменяющуюся под воздействием красных и дальних красных лучей и широко распространенную в тканях высших растений. Обратимые изменения этого фотофермента, судя по многочислен­ным данным, являются ключевыми для регуляции светом многих сторон жизнедеятельности растений, в том числе осуществления фотопериодиче­ской реакции, ростовых процессов, биосинтеза ингибиторов роста.

Имеются данные о влиянии фитохрома на биосинтез антоциана. Не­которые исследователи считают, что биосинтез антоциана может быть связан с центральным звеном регуляции красным и дальним красным светом обменных реакций в растительном организме. Высказываются предполо­жения (Vince, Grill, 1966), что в синтезе антоциана на красном и дальнем красном свете участвуют две формы фитохрома — восстановленная и окисленная. Вместе с тем, как уже указывалось, и медь играет важную роль в биосинтезе антоциана.

Можно было бы думать, что медь оказывает влияние на чувствитель­ность к фотопериодической реакции через антоциан. Однако, как выяви­лось, прямой зависимости между содержанием антоциана и цветением не наблюдается.

Интересно было бы выяснить роль меди в структурной организации клетки, в частности влияние меди на строение внутриклеточных мембран, о синтезе которых можно косвенно судить по содержанию фосфолипидов. На животном материале Галахер и его сотрудники (Gallacher et al., 1956) показали сильное угнетение синтеза фосфолипидов при недостатке меди. Интересно было бы в связи с этим выяснить влияние меди на синтез фос­фолипидов у растений. Следует обратить внимание на то, что ацетилкофермент А играет, также как и медь, существенную роль в биосинтезе ан­тоциана и является общим звеном, связывающим биосинтез антоцианов с обменом липидов.

Вместе с тем, согласно гипотезе Бортвика, Хендрикса и Паркера (Borthwick, Hendricks, Parker, 1961), активная форма фитохрома, образующаяся из неактивной в результате поглощения красного света, представляет собой дегидрогеназу ацетилкофермента А.

Перейти на страницу:
6 7 8 9 10 11 12 13 14 15

 


Copyright © 2013 - SimpleBiology.ru - Все права защищены