logo

Физиологическое значение меди в жизнедеятельности растений

Пластоцианин был открыт Като и Такамия (Katoh, Takamiya, 1961) в хлоропластах хлореллы и шпината. Характер спектра пластоцианина свидетельствует об относительно высоком содержании в его молекуле тирозина и фенилаланина и об отсутствии или очень малом содержании триптофана (Мутускин, Пшенова, 1970). В листьях некоторых растений почти половина всей меди находится в виде этого медьсодер- жащего белка: пластоцианин окрашен в синий цвет. Это определяется тем, что Сu2+ связан с его белковой молекулой четырьмя координационными связями. Пластоцианин участвует в окислитель- но-восстановительных реакциях, но в отличие от настоящих оксидоредуктаз не способен к автооксидаций и в восстановленной форме не реагирует с молекулярным кислородом.

Так как пурпурные бактерии не содержат пластоцианина, то вначале было высказано предположение об участии пластицианина в механизме выделения кислорода, отсутствующем в фотосинтетической системе пур­пурных бактерий. В дальнейшем, однако, выявилось, что пластоцианин участвует в выделении кислорода не непосредственно, а скорее в реакции образования сильного фотовосстановителя, являясь, как это было по­казано на Scenedesmus obliquus, существенным компонентом электронно-транспортной цепи пигментной системы I в хлоропластах (Bishop, 1964; Fork, Urbach, 1965; Trebst, Elstner, 1965).

Требст и Эльстнер (Trebst, Elstner, 1965) показали зависимость реак­ции восстановления НАДФ от пластоцианина и получили данные, гово­рящие в пользу того, что пластоцианин — облигатный переносчик в си­стеме транспорта электронов при фотосинтезе. Вессельс (Wessels, 1965) обнаружил восстановление пластоцианином НАДФ+ фотовосстанавливающей активности в фрагментированных дигитонином хлоропластах шпината. Е.А.Акулова и Е.Н.Мухин (1968) изучали роль пластоцианина из листьев гороха в восстановлении НАДФ фрагментами хлоропластов, обработанных дигитонином. Они получили данные, подтверждающие участие пластоцианина в НАДФ-восстанавливающей системе, и обнару­жили, что внесение субстратных количеств пластоцианина может влиять на положение точки насыщения на световой кривой. Это позволяет пред­положить участие пластоцианина в адаптации НАДФ-восстанавливающей системы хлоропластов к условиям освещения.

Пластоцианин, как выяснилось (Fork, Urbach, 1965; Trebst, Elstner, 1965, и др.), имеет одинаковый потенциал с цитохромом f и включается в цепь транспорта электронов между фотохимическими системами I и II, он участвует в образовании сильного восстановителя, являясь компо­нентом электроннотранспортного механизма фотохимической системы I. Цитохром f является непосредственным донором для пигментной системы I.

Кок и Рураинский (Kok, Rurainski, 1965) выдвинули предположение, что пластоцианин и цитохром f, обладая почти одинаковым редокспотенциалом, могут включаться в электронную цепь параллельно. Опыты с мутантами Chlamydomonas reinhardii, лишенными цитохрома 553 или пластоцианина, позволили определить, что пластоцианин в цепи переноса электронов стоит после цитохрома 553, который близок к цитохрому f петрушки. (Gorman, Levine, 1965);

Элстнер, Писториус, Бегер и Требст (Elstner, Pistorius, Boger, Trebst, 1968) пришли к выводу о существовании двух возможных доноров электронов для пигментной системы I — пластоцианина и цитохрома f. Они предполагают существование и двух пигментных систем I, возможно, пространственно разобщенных: одна связана с циклическим переносом электронов, и ее компонентом является цитохром f, другая принимает участие в нециклическом переносе электронов, и ее компонентом является пластоцианин. При обработке хлоропластов ультразвуком пластоцианин показал себя лучшим акцептором электронов, возникающих при фото­окислении воды фотохимической системой II, чем цитохром f. Сейчас можно считать доказанным (Avron, Schneyour, 1971), что пластоцианин является медиатором индуцируемого светом окисления цитохрома и тем самым служит переносчиком электронов между цитохромами и фотосистемой I. Приведенные данные показывают, что медь (пластоцианин) и железо (цитохром f) взаимодействуют в процессе фотосинтеза.

Перейти на страницу:
1 2 3 4 5 6 7 8 9 10

 


Copyright © 2013 - SimpleBiology.ru - Все права защищены